RING-CURRENT EFFECTS ON CARBON-13 CHEMICAL SHIFTS OF SP-HYBRIDIZED CARBONS IN CYCLOPHADIYNES¹)

Takahiro Kaneda, Taichi Inoue, Yoshitaka Yasufuku, and Soichi Misumi* The Institute of Scientific and Industrial Research, Osaka University

Suita, Osaka, Japan

(Received in Japan 20 January 1975; received in UK for publication 1 April 1975)

Ring-current effects have been important, familiar phenomena in the ¹H NMR spectroscopy. However, there have been rather a few studies of ring-current effects on ¹³C-chemical shifts.²) Model compounds needed for such studies should be selected with adequate prudence because the ¹³C resonance shift caused by a ring-current effect is generally too small as compared with the ¹³C-chemical shift variation due to other factors. Recently, marked ring-current effects on ¹³C-chemical shifts were observed in some bridged annulenes.^{2a,b}) For benzenoid system, weak effects were observed on ¹³C NMR study of [12]paracyclophane. though the methylene-carbon signals in problem were not clearly assigned.^{2C})

We have studied ¹³C NMR spectra of cyclophadiynes³) from the following advantage: in each pair of rigid compounds A₃ and B₃, and strainless ones A₄ and B₄, the diacetylene sp-carbons should be closely fixed with the same spatial arrangements on the aromatic ring as seen from X-ray analysis of B₃, ^{3b}) and were considered to be appropriate ones for examining ring-current effects on ¹³C-chemical shifts. Thus, we have found clear evidence for the presence of these effects on their ¹³C NMR spectra. The ¹³C shifts obtained are shown in the Figure.⁴)

Both middle and propargylic methylene-carbons in A_3 show almost equal chemical shifts to those of the corresponding carbons in B_3 . On the other hand, both inner and outer sp-carbons in A_3 are shielded by 1.2ppm relative to the corresponding carbons in B_3 . This upfield shifts of 1.2ppm should be mainly caused by the difference in ring-current effects between the two aromatic rings, which was theoretically estimated earlier.⁶ Similar but slight upfield shifts of sp-carbons (inner -0.4; outer -0.6ppm) are also observed in the tetramethylene-bridged pair,

1543

Figure. Carbon-13 chemical shifts, &

A, and B,. The larger upfield shifts seen in the trimethylene-bridged pair than those observed in the tetramethylene-bridged one are easily explained by the shorter non-bonded interatomic distances between the sp-carbons and the aromatic rings in the former pair.

In comparison of the chemical shifts of strained B₃ with those of strainless B_4 , downfield shifts of sp-carbons (inner +2.6; outer +3.9ppm) and an upfield shift of the bridgehead sp²-carbons (-0.5ppm) are found. These shifts would be caused by rehybridization of normal sp- or sp²-hybridized carbons due to trans-annular π -electron interactions containing repulsion. Similar shifts of sp-carbon signals and the bridgehead sp²-ones are also found in the anthracenophadiyne pair, A_3 and A_4 .

References and Footnote

- Layered Compounds Part XXVI. Part XXV: T. Umemoto, T. Kawashima, Y. Sakata and S. Misumi, Tetrahedron Letters (1975) in press.
- 2) a) R. du Vernet and V. Boekelheide, Proc. Nat. Acad. Soi. USA, 71, 2961 (1974) and references cited therein; b) H. Günther, H. Schmickler, H. Königshofen, K. Recker and E. Vogel, Angew. Chem. 85, 261 (1973); c) R. H. Levin and J. D. Roberts, Tetrahedron Letters, 135 (1973).
- a) T. Inoue, T. Kaneda and S. Misumi, Tetrahedron Letters, 2969 (1974); b) T. Matsuoka, T. Negi, T. Otsubo, Y. Sakata and S. Misumi, Bull. Chem. Soc. Japan, 45, 1825 (1972).
- 4) Measurement conditions: Varian XL-100-15 FT NMR spectrometer (25.2 MHz), ¹H noise decoupling, 0.12M CDCl₃ solution, TMS as internal standard, $\delta \pm 0.1$ ppm. The assignments of signals were based on molecular symmetry, NOE, and ¹³C-chemical shifts of various diacetylenes reported in Ref. 5.
- 5) D. E. Dorman, M. Jautelat, and J. D. Roberts, J. Org. Chem. 38, 1026 (1973);
 C. Charrier, D. E. Dorman and J. D. Roberts, *ibid.* 38, 2644 (1973).
- 6) N. Jonathan, S. Gordon and B. P. Dailey, J. Chem. Phys. 36, 2433 (1962).